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We consider the flow in a differentially heated vertical slot filled with a stably 
stratified solution. The stability of the flow driven by the differential heating is 
investigated in the limits of small but finite amplitude disturbances and very 
large solute Rayleigh number Rs = g/3(8h',/&.) D4/Ksv. I f  the Schmidt number 
H = K,/Ks is of order 1, the growth of an initial perturbation at the neutral 
point is balanced by horizontal advection of solute and heat, and a steady 
equilibration amplitude is attained. The Nusselt number is independent of all 
fluid properties and is directly proportional to the Rayleigh number excess 
E = (R, - Rae)/Rae. I f  H is much greater than I RsIQ, or if the disturbance wave- 
number is slightly less than the critical wavenumber, subcritical instabilities are 
possible. I n  particular a resonant instability is possible. These theoretical pre- 
dictions are consistent with previous experimental results and with the laboratory 
results described in this paper, In  the experiments we find that the mixing of the 
initial sugar gradient is accomplished by convection cells which undergo transi- 
tions to larger wavelengths. The breakdown of the interfaces between convection 
cells is described. 

1. Introduction 
Several authors have previously considered the stability of flows with both 

horizontal and vertical mean temperature and salinity gradients. The motivation 
for these studies came partly from observations of layer formation in stably 
salt-stratified fluids prepared in the laboratory, often for unrelated purposes 
(see Turner & Stommel 1964). I n  such experiments a linearly stratified salt 
solution is subject (intentionally or accidentally) to side-wall heating. This 
creates vertical isotherms and slanted isohalines in the fluid which in certain 
circumstances can balance so that there are no horizontal density gradients. If 
one displaces a parcel of fluid sideways through these heat/salt gradients buoyancy 
forces will not normally act to create perturbation vorticity; except that if the 
diffusivities of salt and heat are unequal the density balance will be destroyed 
by differential diffusion. The motion resulting from this diffusive destabilization 
has been called sideways diffusive convection. 

Various linearized stability problems concerned with the onset of this kind of 
diffusive convection have appeared in the literature. Blumsack (1967), Thorpe, 
Hutt & Soulsby (1969) and Hart (1971) have considered the stability of the motion 
generated in a differentially heated vertical slot filled with a linearly stratified 
salt solution. Another problem concerned with overturning in a rotating stratified 
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fluid (where angular momentum is analogous to salt) has been treated by McIntyre 
(1970) and some qualitatively supporting experiments were reported by Baker 
(1971). The stability of a binary mixture in a thermal diffusion column was 
discussed by Nikolaev & Tubin (1971), but in their calculation they apparently 
did not take large enough concentration gradients to allow for the sideways 
diffusive mode of instability. 

The thermohaline problem mentioned above is the topic of this paper. It is 
of particular fundamental interest because it is an example of double diffusive 
convection where the analytical theory can cope with the experimental boundary 
conditions. Most of the theoretical studies (Stern 1960; Baines & Gill 1969; Veronis 
1968; McIntyre 1970) employ constant temperature and salinity boundary 
conditions or work in an infinite region, so these problems are not easily simulated 
experimentally. Also, in view of the existence of a wide range of analogous 
problems with applications in aspects of rotating geophysical fluid dynamics, 
oceanography and chemical engineering, results from the thermohaline (or 
thermosolutal) problem are of particular interest, especially since this system 
offers an opportunity to study a kind of double diffusive convection both 
theoretically and in the laboratory. I n  this paper we shall be concerned with 
flows in a narrow, very tall channel. Wirtz, Briggs & Chen (1972) and Chen, 
Briggs & Wirtz (1971) have studied certain aspects of wide-channel flows in the 
laboratory and have made some numerical integrations. These wide-gap flows 
have time-dependent basic states and boundary conditions which are quite 
different from those reported here, and while some of the physics may be similar, 
quantitative comparisons between the two eases cannot be made at  this 
time. 

The author (Hart 1971, hereafter called I) compared numerical and asymptotic 
linear stability results with the experimental results of Thorpe, Hutt & Soulsby 
(1969), whose report will be called THS. Their experiments were run in a narrow 
vertical slot, with walls maintained a t  a temperature difference AT. The slot 
was very tall and initially contained a constant vertical gradient of salt 8s,/az. 
The differential heating generated a parallel mean flow near the centre of the 
apparatus which was observed to become unstable at  a critical value of the 
thermal Rayleighnumber R, = gaATD3/KT v which was a function of the salinity 
Rayleigh number R, = g/3(a8,/ax) D4/Ks v. 

I n  comparing the linear theory and these experiments it was found in I that 
both the numerical and the asymptotic theory overestimate the critical Rayleigh 
number R, at large values of - R,. Also THS reported that all cells appeared to 
rotate in the same sense with a wavelength twice that predicted by linear theory. 
We shall see that this was a consequence of comparing an interior theory with 
observations made in the side-wall boundary layers. Nonetheless the corrected 
experimental wavenumber results of THS shown in figure 6(c) are lower than 
the predicted values. Now it is possible that these discrepancies are due t o  non- 
Boussinesq effects or to violation of quasi-static assumptions used in the theory, 
but without a more complicated calculation we can only speculate (see I) that 
these explanations are incorrect. Another possibility is a subcritical finite 
amplitude instability which might develop a t  large ( -  R,) when the mean 
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velocity field effectively vanishes. The testing of this hypothesis is the main 
motivation for this study. 

To help in the effort to discover what could account for the above-mentioned 
discrepancies we have conducted more experiments with a more sensitive 
visualization method. Weak sinusoidal circulations with wavenumbers near but 
below the predicted wavenumbers do appear a t  onset but last only a very short 
time, as the experimental system makes a series of transitions to lower wave- 
numbers. The transitions to  fewer and fewer cells is apparently the way the 
initial solute gradient is mixed up, and the final state of a single cell just corre- 
sponds to the thermally driven flow in the box. 

The substance of this paper is divided into the following parts. I n  $ 2  we 
review the analytic linear theory based on an expansion of the equations in 
terms of the small parameter - R,*, A finite amplitude expansion is constructed 
based upon a small parameter E = (R, - Rac)/Ruc, where R,, is the critical Rayleigh 
number obtained from linear theory. I n  $ 3  the various sequential problems 
in the double-parameter (1~14, lRsl-*) expansion are solved to O ( ] E / ) ,  and an 
existence condition on the O(lsl%) problem shows that the amplitude A(t)  of 
the fundamental disturbance satisfies an equation of the form 

A-a0A+a,IA12A = 0. 

The Landau constants are evaluated for H N 1 and H > I Rsl*. Section 4 describes 
the experimental results. Conclusions and a summary are given in $ 5. 

2. The linear theory 
The formulation of the governing equations is the same as that in I. We assume 

that the channel is infinitely tall, differentially heated a t  the sides, and filled 
with a vertical S-stratified liquid.? The geometry and boundary conditions are 
shown in figure 1. Within the Boussinesq approximation the non-dimensional 
equations are 

P71- + - u . VU = - V p  + (T - 8) 2 + V ~ U ,  (2.1) 

(2 .2)  

(2.31 

v.u = 0. (2.4) 

au R, 
at P, 

aqa t  + R,U. VT = V ~ T ,  

H axlat + HR,U . vs + R, UI = V ~ S ,  

The thermal Rayleigh number mentioned above is defined by 

R, = ga ATD31KT v, 

and 

We have specified a stable stratification (R, < 0) and without loss of generality 
we choose R, > 0. The Prandtl number P, = v/K,  and the Schmidt number 
H = KT/K,. Velocities have been scaled byga ATD2/v, lengths by D, temperature 

t X will denote a general solute, which was either sugar or salt in the experiment. 

4 FLM 59 
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x*=o .p=D 

FIGURE 1. Geometry and boundary conditions for the problem. In  the experiments the 
box is of finite depth and height but this seems to have little effect except in the very h a 1  
stages of development. The box initially contains a linearly stratified solute: aS,/az = con- 
stant. 

by AT, solute concentration by aAT/,l3 and time by K,/D2. The other dimensional 
constants are a, the coefficient of thermal expansion, p, the coeffioient of 
volumetric expansion, K,, the diffusivity of temperature, K,, the diffusivity 
of solute, v, the kinematic viscosity, and g ,  the gravitational acceleration. 

The boundary conditions at  x = 0, 1 are 

T = 0, -1 ,  S,  = 0, u = 0. ( 2 4 ,  (2.6)) (2.7) 

With side walls impermeable to solute any convective overturning would tend 
to destroy the basic vertical salinity gradient as,/& were it not for compensating 
vertical advection of new salty (fresh) fluid. As we shall see, this is accomplished 
by narrow vertical boundary currents near x = 0 and x = 1. 

As was discussedin I the thermal forcing will drive a parallel flow in the channel 
This will be governed by the equations 

wO,, + To - 8 0  = 0, (2.8) 

Toz, = 0, SOxx - R, W O  = 0. (2.9), (2.10) 

The solutions for large - R, are 
To = - X, (2.11) 

+ ecmX sin m x  e-mx cos m x  
wo = +( l ) )  so= -x- +( l ) ,  (2.12),(2.13) 

2m3 m 

where the (1) terms contain similar boundary layers near x = 1. The inverse 
boundary-layer thickness is 

m = ( -  $R&. (2.14) 
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In  I it was found that the linearized stability problem for large - R, could be 
split up into interior and boundary components. In  addition the strong vertical 
stabilization forced the disturbances into thin layers in which a/& B a/ax in the 
interior. In this paper we want to consider finite amplitude effects in addition 
and to do this we shall consider a perturbation solution off the linear neutral 
curve given by 

by an amount E .  That is we consider 

R,, = %( -A,, k ,  4, H )  

R, = R, + cRUc. (2.15) 

In this section on the linear problem we shall just note that a consistent ex- 
pansion of the nonlinear one-wave problem requires that we expand variables in 
powers of 1619. Taking the large value of - R, and the small value of E into 
consideration we are motivated to expand the stream function 

Y (w = YZ) u = -Ya) 
w m  

as Y = Yo+ x x I€p [R,/-- :i ( Y i j  (2, x, t )  + Tgj( lRsl + i ~ , z , t ) ) ,  

with similar expansions for T and S. We seek solutions which satisfy 

(2.16) 
i= l  j = o  

Y = Y , = S , = T = O  at x = O , l .  

The parameter setting i = 1, j = 0 generates the linear stability equations from 
(2.1)-(2.4). As the equations are linear with coefficients depending a t  moat on x 
we can look for solutions Ylo = $lo(x) ewteikz, etc., where k is implicitly assumed 
to be of O( [ R,(b). Then we find: 

P;1 wk2$,, + k4@,, + dTlo - dSlo = 0, 

- ikRu$lo - wTl0 - k2T10 = 0, 

- ikHR, $lo - d$lo R, - HwS1, - k2S10 = 0, 

(2.17) 

(2.18) 

(2.19) 

-P,1wlRs1*d2$10+ lRsl d4glo+ I R s l ~ ( d ~ l o - d & o )  = 0, 

- Hwfl10 + lRs[ 9 d2f110 - IR,ql' $10 = 0, 

(2.20) 

(2.22) 

-w!Tl0+ IRsl*d2!Tl0 = O,!  (2.21) 

where d = d/dx. The advection terms in (2.20)-(2.22) are omitted because they 
are of higher order in lR,l-*. There are also two purely diffusive side-wall 
boundary-layer solutions of the equations which are needed to help satisfy 
boundary conditions. These are 

TIOd = a,ek(Z-l)+a 8 eckX (2.23) 

and SIOd = a, eka-1) + a 8 e-kx. (2.24) 

In I it was noted that the boundary layers described by (2.20)-(2.24) were steady 
(w < IR,l+) and that they dominated the differentiated boundary conditions 
w = d$ = 0 at x = 0,1, and dS = 0 at  x = 0 , l .  This can be seen by writing down 
the boundary conditions at  x = 1, putting in the two boundary solutions at  this 

4-2 
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FIGURE 2. Curves of neutral stability determined from the lowest order 
linear interior theory. 

wall, and by using simple algebra to show that we can satisfy all the boundary 
conditions to O( (R,J -&) provided we take $l,,~z=l = 0. Similar considerations hold 
a t  x = 0. Thus 

$iio = 0 a t  x = 0 , l  (2 .25)  

is the proper boundary condition for the interior problem. This boundary con- 
dition applies to all orders of the nonlinear expansion bracketed between the 
linear problem and the &st diffusive ( j  = 1 )  correction. 

The assumption that w < IRsl*, verified below, enables us to find w from the 
solution of the interior equations, subject to (2.25).  Prom this we find the eigen- 
value equation 

k6Ri( 1 - H ) 2  + 4Rs(wk2/P,+ k4)  (w + k2)2 (Hw + k2) = 4n2n2R:(u + k2)2, (2 .26)  

where n is an integer. If we write w = w,+iwi and equate imaginary parts of 
the above equation, we find 

Thus, if w, > 0 (growing solutions), we must have w( = 0. Overstability is not 
possible and w must be real. The neutral curve is found to be at  

R&(H - l ) z  = 4n2n2k2  R; - 4Tc4Rs, 

kc = ( - +n2+R s) -k 
with a minimum at 

(2 .27)  

(2.28) 

such that the most unstable mode occurs at  

R, = 2k6~1Rs19(nn)%/ lH- lI .  (2.29) 

Figure 2 shows a set of neutral curves for various R,. 
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The solution for $lo under neutral conditions is 

$ 10 - - A(e'ix-erzx)eikz+*, 

53 

where * denotes the complex conjugate of the part given. The characteristic 
exponents are 

ikB,,(H-l)  1 + - ( -  k2R:(H - 4Rsk6)9. (2.30)  
2RS - 2R, r 2 , 1  = - 

If R, = R,, + eRac we can assume w = O ( E )  and obtain, for large P,, 

- IR'l'(n2n2)6 at the critical point. (2.31) 
R,, k2 sgn E 

w =  
R ,  + 2Rs k4H/R,,(H - 1 ) 2  - 2+( 1 + QH) 

It is seen that the growth rate increases with - R,, decreases with increasing H ,  
and is of order k2 w (R,I) < IRs14, as assumed. If E < 0 the linear growth rate of 
course becomes a damping rate. 

3. Finite amplitude effects 
We wish to consider fmite amplitude corrections t o  the basic solution. We 

assume here that only one fundamental wave is present. We want the nonlinear 
effects to be more important than boundary and interior corrections which, if 
anything, caused increased disparity between experiment and theory. Thus we 
must take e large enough so that nonlinear terms dominate; that is I E (  > (R,I-*. 
Sincewe have defined E by (2 .15 ) )  equation (2 .31)  suggests that weintroduce anew 
time scale 7 = et so that a/at + 6 a/&-. Recall that the O( \el*) solutions on the 
neutral curve were 

= A(7) (eriz-erzx)eikz+* , Tl = -iRmk-l$1, S, = T1+k4J$,dx, ( 3 . 1 )  

where we have dropped the second subscript, since j = 0 in all that follows. The 
O(c)  interior equations consist of those describing the mean-field corrections, 

Rac  8n2?r2RacklA'2sin2nnx, (3.2) 
- -  - 

P, WZXX + Tz - 8, = - ($12 $lxz - $12 $lxx) = - P, 

TzXx = R ~ c ( ~ l x T l ~ - @ l ~ T l x )  = 8R:,n?~IA1~sin2n?rx, (3 .3 )  

8,,-RRSW2 = 4H(H+1)R~,nn~AJ2sin2nnx, (3 .4)  

16k4@,+dT2-dS2 = 0, (3.5) 

- 4k2T2 - 2ikR,,$2 = 0, (3 .6)  

along with equations for the parts dependent on eZikz, 

(r2-r )2 - 4k2Xz - 2ikR, H$, - Rs = - ik5 2 HR, A 2  e@i+rd i- *. ( 3 . 7 )  

The bar denotes the z average over one basic period 2nlk. Note that as opposed to 
the weakly nonlinear theory for ordinary thermal convection between horizontal 
plates, here we force a response proportional to e2ikz. This comes about because 
the fundamental cells are tilted and influenced by boundaries. Physically it 

r1r2 
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describes the modification to  the initial vertical salt gradient. The solutions for 
the mean corrections are 

9 ( 3 4  

( 3 . 9 )  

- 4 n n ( H 2 -  1) R&JAI2sin2nnx 
w2 = 

1 6n4n4 - R, 

T2 = - 2Ri,(  A I sin 2nnx/nn, 

4n3n3(H2-  1) R;, 
1 6n4n4 - R, 

B2 = [ - 2R2,IA 12/nn - ] IAI2sin2nnx (3 .10 )  

N IRslV lAI2/H2. 

The heat and solute advection by the disturbances cause corrections to the 
horizontal parts of the mean fields which reduce the horizontal driving for the 
perturbations (note that the coe5cients of T2 and S ,  are < 0). 

$2 = (d, e ( r i + r d x +  d, e p s x  + d4 e p 4 x )  A 2 e 2 i k S +  *, (3 .11)  

where the second and third terms on the right-hand side represent comple- 
mentary solutions of (3 .5) - (3 .7)  and are needed to satisfy $,(x = 0 , i )  = 0.  Now 

The z-dependent response is 

(3 .12 )  

and the other parameters are easily obtained from (3 .5) - (3 .7)  and by applying 
boundary conditions. Note that d,, d,, P3 and P4 will in general be complex and 
d,, d4 d2. 

The O( \e l# )  problem is 

= w 3 )  = HSlXT - T l X T  + RaAi - H )  $ l X 8  
. 

- R a c P ; l ( $ l x  $2822 - $18 $2xzz + $ 2 1  $lZZZ: - $22 $ l r z z ) z z  

- R a c ( W 2 T 1 ,  + $ 1 x T 2 z  + $ Z X T l Z  - $lzlT2X - $ 2 Z T l ,  - $18 E x ) x  

+ HR,(@, El, + $ I x  4, + $2s 8 1 2  - $12 8 2 ,  - $22 81, - $12 B 2 d X  

= fl e i k 2  + f2 e3 ik2  + *. (3 .13 )  

9 is the operator of the linear problem if we isolate the eikz part of the problem. 
Thus a solution exists only if 

(3 .14 )  

where $1 is the solution of the adjoint problem 

-Rsd2$l+ik(H-1)R,d$l-1%6$1 = 0, $1(~ = 0 , l )  = 0.  (3 .15 )  

The almost trivial solution of (3 .15)  and the application of the existence con- 
dition (3 .14 )  will yield the amplitude equation for A .  The latter task is anything 
but trivial since essentially all of the terms on the right-hand side of (3 .13 )  
contribute to fl. Now if H = O( I)  it can be seen that except for a certain special 
instance discussed below the mean-field corrections will dominate the e z i k z  terms 
(compare (3 .12 )  with (3 .10 ) ) .  On the other hand, if H > JR,Ii, it is somewhat 



0.004 

55 

0 1 1 I 1 1 

0 

00 
00 

Qa 
- 

I 0 

0 

0 0.2 0.4 0.6 0.8 1 .o 1 .? 

Y P  
- 

FIGURE 12. Distribution of uT/U;,, v z / V ~ ,  and w"/Ui,  across the boundary layer. 
0, x = 24in.; A, x = 59in.; 0, x = 67in.; 0 ,  x = 71in. 

5. Discussion 
The wall friction data obtained by the Clauser plots are in agreement with 

a n  overall momentum balance described in appendix A, but appea.r a bit large 
relative to a wall extrapolation of the hot-wire data in figure 11. However, 
Bissonnette & Mellor (1971) had previously determined that -zcV (but not the 
energy component) data are measured low by the present system roughly when 
y / l s  2, where I is the wire length. This corresponds to y/S 5 0.13 in figure 11. 

Further evidence that curvature does not affect the flow near the wall is 
contained in figures 13(b) and 15, where the turbulent energy and production 
normalized by u, are similar to the flat-plate data in the wall region 

(y < 0.168 z 2 0 0 ~ / ~ , ) .  

The data at x: = 59in. (figure 13b) are influenced by the favourable pressure 
gradient at the entrance to the curved section; however, this influence disappears 
by the time the flow reaches x = 67 in. 

Equilibrium was not achieved. This is due primarily to the curvature itself, 
which has literally 'turned off' the shear stress at y z 0.48 2 0.4 in., where the 
velocity gradient is substa.ntia1. The ratio AIR increases a bit but this is probably 
a minor influence. (Note that in figure 12 the scattered deviation of ZLV about 
zero when y > 0.46 is about the same as the deviation of UW everywhere. This 
can be taken as the measurement error for the system although agreement of 
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FIGURE 3. The function sgn ( 2 X  + g + g * )  Ilog,, I2X + g + g* I I as a function 
of Rs and k for H = 281 (sugar, water). 

I will not comment further on this since as we shall see below this equilibrium 
may not be attained for any H .  

The most interesting theoretical results come when we evaluate g. In  terms of 
the existence of possible finite amplitude subcritical instabilities what is im- 
portant is the sign of X+g(g+g*). We oan vary k along the neutral curve at 
fixed R, and H and oalculate this combination.'f Figure 3 shows the results for 
H = 281. We have plotted [sgn{X+$(g+g*)} llog IX++(g+g*)II] in order to 
compress large variations into the plot. Since this Landau constant is generally 
$- 1 no ambiguity results. 

It is seen that the Landau constant multiplying the nonlinear term of (3.22) 
can in general be negative for a range of k at each value of R,. This means that 
subcritical instabilities are possible if the background perturbations are large 
enough. The range of E over which this fhite amplitude instability is possible 
diminishes as H becomes of O(1). This is consistent with the fact that the 
stabilizing part X (equation 3.19), which describes the effect of reducing the 
interior mean horizontal gradients by the fundamental, goes as IR,l"s"/H2, while 
the destablizing part g (equation 3.21) goes as IR,l'?. 

Most interesting are the resonance lines along which g becomes infinite. Thus 
no matter how small H is we still will get a small region where Re ( X  + g )  is 

t The usual justification of a one-wave analysis is that just inside the critical point 
only one wavenurnber will grow. However, if subcritical instabilities are possible for any k 
the general normal-mode cascade method based on neutral solutions may be invalid, and 
this possibility must be checked. 
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negative. The source of this resonance can be seen to  arise from the forcing of 
the second harmonic of the fundamental. From (3.12) it is seen that the response 
to this forcing, described by (3.5)-(3.7), becomes infinite when 

or when 

(3 .23)  

(3.24) 

For the certain k along the neutral curve given by (2.27) the second harmonic 
( e 2 i k r z )  forces a resonant response in Y2. It is interesting that the point (R,,, 2k,) 
does not lie on the neutral curve on the other side of critical wavenumber k,, 
where we might naturally expect a resonance, but outside it. This is because the 
z-dependent part of the forced eigenfunction is different from that of the neutral 
eigensolution. The singular behaviour arises from the particular dynamics of the 
system. The mixing of the stable vertical solute gradient by the disturbances 
destabilizes the system, and in particular wavenumbers near kr are most efficient 
in doing this. 

The resonance a t  k? suggests that we consider two primary waves 

A ( ~ , X ) ~ ~ ~ F ~ + * ,  B(7,x)eZikr2:+*. 

The solvability condition at  the quadratic (O(E) )  level requires that we add a 
faster time scale + = I s l i t  to balance nonlineerities. Then we shall find a non- 
linear exchange of energy between A and B. There is as yet no coupling to the 
mean fields. This comes in at third order, and on the slower time scale. Since all 
the harmonics (3,4, - 3, - 4) generated in the O(ls1) problem are important, the 
algebra required to compute the coefficients of the O(]@) problem by using rela- 
tions like (3.14) on the two forced equations will be abysmal and this analysis 
has not been attempted. We only note that the coefficients multiplying the 
nonlinear terms at  quadratic level are large, so that energy transfers between 
modes occur very rapidly. 

In  conclusion, our theory has told us of the existence of subcritical finite 
amplitude instabilities at all values of H > lRsl* (further calculation would 
probably extend the range to all H, provided the background perturbations were 
large enough). At Ic, = (&n2m2 /RBI )*a resonant type of finite amplitude instability 
is possible wherein background perturbations in either Ic, or 2k? can grow. Further 
discussion of the physics involved will be given in $5. 

4. Experimental results 
The theoretical conclusions of Q 3 are in substantial agreement with the ex- 

periments of THS. This can be seen from figure 6 (c) and figure 5 (a )  of I. The 
observation of onset Rayleigh numbers greater than critical for - R, < 106 may 
well be a reflexion of boundary influences on the nonlinear interior dynamics 
(e.g. 1.1 < lRsl-*). In  spite of this favourable comparison with existing experi- 
ments we decided to conduct some more experiments to check the theory further 
and to make observations of the long-time development of the sideways diffusive 
convectioii. Our apparatus is similar to theirs, a tall and narrow slot with 
conducting walls maintained at  constant temperatures ( & 0.01 "C). The initial 
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solute (sugar) gradient was made with an 'Osterizer ' (Oster 1965). The fluid was 
injected very slowly (at 1 cc/IOs) into the box (40 ern high x 1 ern wide x 18 em 
deep) using a metered tubing pump to ensure a uniform gradient. The principal 
differences between our experiments and those of THS are the following. 

(i) A larger height-to-width ratio (40 : 1). 
(ii) The use of a sugar as a solute in most runs (H,,,, N 2*8H,,,,). 
(iii) The use of the thymol dye visualization technique (Baker 1966). 

4.1. Observations of the onset of disturbances 

The Rayleigh number was slowly increased (by varying AT) from +Rat to N R,, 
over a period of about 4-5 hours. Dye lines were induced along x = 0 at periodic 
intervals. Figure 4(a) (plate 1) shows a typical visualization of the onset of 
instability. Note that the instability initially appears in bursts (which is probably 
typical of subcritical instabilities). The disturbances fill the entire slot relatively 
quickly. Note that the interior flow has a sin l%z type structure. Apparently the 
statement of THS about asymmetric cells of double wavelength is partly a result 
of their observations being made near the walls (by looking at dye coming off 
suspended potassium permanganate particles). It would appear that this i, c a con- 
sequence of the interior and boundary-layer nature of the flow. For example the 
theoretical solution 

- e-m(l-%) 

4m4 
21. = _.-- [cosm( 1 - x) + sinm( 1 - x)] - A  eikz 

shown in figure 5 exhibits a similar behaviour if A is small. A dye column in- 
jected next to the right-hand wall will enter the interior mostly at  points 
equivalent to once every two rolls. But a column launched near x = 4 will show 
the sin kz structure of the fundamental. The second harmonicwillalso cause a dis- 
tortion away from the pure sinusoidal structure of the fundamental. This will 
also be strong near the walls (but outside the -@ layers). These effects are 
evident in figure 4 ( b )  (plate 1). 

Our measured values of the onset parameters are shown in figure 6. Most of 
the experiments were made at  larger - R, t h m  those run by THS. For some R, 
two runs were made with nearly identical results for each run, although the 
initial bursts of wavelets occurred in different parts of the tank. The flows are 
subcritically unstable even for our most carefully run experiments. Again k is 
approximately IC, not kc.t  In  addition there is a tremendous amount of hysteresis 
in the system. If R, is decreased after the subcritical motions have set in, the 
disturbances do not disappear until R, is halved. f: 

At the first observation of wavelets the advance of AT was halted. In  parts of 
the tank new bursts of waves would become visible so that one might have ex- 

? At this time it is useful to point out that the length scale based on the stratification 
alone, aAT/PSoa (which predicts k - 1.351Rs[* for most of our data), overestimates k and 
does not really explain the observation of rolls at a critical temperature difference. 

3 The precise value of course depends on how long the disturbances have had to develop. 
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FIGURE 5. Theoretical streamline pattern of the combined interior and 
boundary-layer flow for x > 4. Rs = - lo6 and A = 

pected them to fill the slot. However, the first bursts to be observed, having 
grown to  larger amplitudes, appeared to break down in a rather short time 
(5-10min) into cells of roughly double the wavelength. Figures 4(c) and ( d )  
(plate 1) show a typical development. It appears that the cells which started 
up first attain larger amplitudes than their neighbours and then can entrain 
them. This very weak amplitude process (the velocities are still small, of order 
0.001 cm/s) probably indicates instability of the basic subcritical solution to 
perturbations of larger wavelengths. 

4.2. T h e  development of the convecting system 

Over a long period of time (10-60h) the system gradually attains a state of 
uniform concentration. The mixing of the initial solute gradient is done by the 
convection cells. At fixed AT, equal to that for which waves were first observed, 
transitions to larger and larger cell heights are observed. Figure 7 shows two 
typical experimental histories, to being the time of first observation ofwaves. The 
transitions do not occur simultaneously over the slot because the initial per- 
turbations are not uniform in amplitude; so the steps in figure 7 are not sharp. 
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FIGURE 6. Onset parameters for our experiments with sugar and water. -, predictions 
of linear theory ; - - - , the resonant wavenumber. The data have been corrected for the 
change in the mean viscosity due to the sugar. I n  figure 6 ( c )  we compare the numerica! 
linear ( N ) ,  analytic linear (k,) and resonant nonlinear (k,) theories with the experimental 
results of THS. 
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FIGURE 7. Time evolution of the system at  two values of AT. 0 ,  AT = 8.5 'C, 
R, = - 2.8 x lo7; x , AT = 1.50 "C, R, = - 2.0 x lo7. In  each case H = 281, P, - 6.7. 

Figure 8 (plate 2) shows some dye-line observations of the cell evolution. Although 
the cells are initially sinusoidal in x ,  one can easily see the development of 
boundary-layer circulations in the cells. 

The mechanism for early transitions appears to be a laminar wave selection 
process. At large AT or t ,  however, strong interfaces form between cells. As 
adjacent cells continuously mix up their own stabilizing solute gradients their 
upwards and downwards velocities increase. The sta.ble interfaces which force 
these currents to turn become deformed until they are, as near as we can tell, 
statically unstable. At this time the interface breaks down in a shower of tur- 
bulence and 'salt' fingers, so tha.t a, cell with double wavelength is set up. Figure 9 
(plate 3) shows a streak-line visualization of this process. When the final interface 
between the last two cells breaks down the solute gradient is essentially debtroyed. 
In  a tank of finite height the background stratification is depleted by vertical 
transport of solute through the cells. If the tank had been infinitely tall it is 
possible that the cell size would have approached a stable equilibrium value 
with a vertical solute transport independent of time. 

5. Conclusions 
We have found theoretical and experimental evidence for a subcritical resonant 

instability of a flow with croseed isothermal and isosolutal lines. The physical 
nature of this resonant destabilization is intimately connected with the initial 
stabilization of perturbations by the very weakly diffusive vertical solute 
gradient. The energy of the perturbations ultimately comes from the differential 
heating. As the problem has been formulated, it would appear that they draw 
energy from the tilted solute distribution, but this is established in response to 
the heating. At later times, after a 'fracture' in the vertical solute gradient has 
established a height scale for the cells, the perturbations are driven thermally. 
This becomes increasingly evident as time goes on. The cells attain a boundary- 
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layer structure and after the solute has finally been homogenized there is a single 
thermally driven cell. The crucial question to which we have addressed ourselves 
in this paper is what governs the initial 'fracture ' of the smooth solute distribu- 
tion S,-tz. The resonant wavelength is that which allows the most efficient 
conversion of the basic available potential energy. 

At second order the fundamental disturbance of wavenumber Ic modifies the 
horizontal basic fields in a sense that causes nonlinear stabilization (this is to be 
expected since the horizontal gradients provide the perturbation energy). The 
fundamental also modifies the vertically stabilizing solute gradient. The forcing 
term ontheright-handsideof (3.7) demandsaresponse to changes in solute caused 
by the fundamental motion. Since the diffusivity is small, the solute build-up 
essentially acts as a buoyancy driving force for the second-ha,rmonic motion. 
However, the action of the second-harmonic motion reduces the basic stratifica- 
tion where the fundamental has vertical velocities, so that in fact the total 
disturbance can draw more energy from the available potential energy associated 
with the basic horizontal gradients. The phase and structure of the second- 
harmonic solute perturbation with respect to the fundamental vertica.1 velocities 
is what determines whether or not there is subcritical instability. This is why 
the Landau constant changes sign across the resonance line; the second harmonic 
shifts phase by 180". These statements can be made more clear ifwe consider the 
equation for the x-fluctuating solute variance. This can be obtained by multi- 
plying (2.3) by S .  We obtain 

a's2 
at 

H L  = XV2S-RswS-R,H 

If we now substitute the interior expansions for u, w, S, t and R, into (5.1) we 
sha,ll obtain a sequence of solute energy equations. At the lowest order (e) we 

(5.2) obtain? 

This expresses the energy balance for the neutral solution as a sum of diffusional 
dissipation, eddy flux from the basic vertical gradient and eddy flux from the 
basic horizontal gradient. If we average this equation over a wavelength and 
across the gasp by integrating, defining 

o = s, a=s,/az2 - R, w1 x, .+ R,, HU, s,. 

we find, after some integrations by parts and application of the approximate 
buoyancy equation (valid for H 2 IRslg) a4$k/i?24 = i?S/ax, 

O = - ( ( y ) + R s ( ( p y )  .+ R, H(u,S,). (5-3) 

The neutral wave is damped by diffusion and by the stable vertical density 
gradient and generated by eddy flux out of the basic horizontal gradient. I n  
particuIar (5.3) requires that (u,S,) > 0, a fact which can be verified by direct 
computation. 

The O ( d )  variance equation vanishes identically on application of the 
periodicity condition. 

t Since we are considering only the interior flow V2 becomes a2/az2. 
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The O(e2) variance equation is 

H a(&Y;)/ar = sgn ( 6 )  R,, H(u, S,) - R,, H(u, X, A!?,,) 

- ~ a c H ( w l S 1 ~ ~  + U l S l  S2,). (5.4) 
The first term on the right-hand side represents the linear growth or decay. 
Since (ulS1) > 0, the sign of this term of course just depends on whether we are 
above or below the linear neutral curve. The second term is the usual nonlinear 
damping term which reflects the reduced eddy flux from the basic state because 
of the modification to the mean field by the interaction of the fundamental with 
itself. This term is always negative and usually serves to balance the first in 
a manner which establishes a steady equilibrium amplitude A,. The third term is 
the one which is responsible for increasing (iX?) even if E is negative. Perha.ps 
one interpretation of this term is that i t  represents eddy fluxes of solute from the 
harmonic to the fundamental. It is clear that the sign of this term will change as 
one crosses the k,. resonance line since u,, w1 and X, retain their signs but 8, 
changes its sign. The computations of $ 3  showed that subcritical instability 
was possible for k < k,.. By using the equation for conservation of S,  it is possible 
to rewrite (5.4) as 

Ha(&S;)/ar = sgn ( E )  R,H(u,S,) - R , e H ( ~ 1 S 1 ~ 2 5 )  

which illustrates the perhaps obvious point that the ultimate energy source for 
subcritical instabilities is the total (fundamental + harmonic) eddy flux from the 
basic X, field. The subcritical instability process is connected with the boundaries 
since fundamental solutions in an infinite domain (cc e(k(z+a)) do not generate 
a harmonic. 

It is natural to ask if any other systems might exhibit similar effects. Veronis 
(1965) found finite amplitude instability in thermal convection between 
horizontal plates with a stabilizing solute gradient, but there the destabilization 
was a result of the mean correction; there are no harmonics. One wonders if the 
linear diffusive instabilities discussed by McInty-re (1970) might have finite 
amplitude destabilization if boundaries were included in the problem. This would 
mean that diffusive overturning could occur at larger stratification or smeller 
thermal winds than those needed for linear instability and hence the mechanism 
might become more relevant to geophysical fluid flows. The resonance instability 
mechanism may be present in other hydrodynamical stability problems where 
tilted fundamental cells generate (or are coupled to) higher harmonics. Apparently 
three-wave three-dimensional resonances are possible in supercritical Blasius 
flows (Raetz 1959; see also discussion in Stuart 1962), but to my knowledge the 
present work shows the first theoretical and experimental evidence of two-wave 
two-dimensional subcritical resonant instability.? However, such behaviour 

t There is of course the well-known two-wave (self-resonant) capillary wave interaction, 
but this has not been posed as a stability problem (with energy flows to and from a mean 
state). If  it were, there might well be similar effects. Certainly there is evidence that these 
capillary waves are unstable and that energy flows to longer wavelengths, as in wind 
generation of sea waves. 



64 J .  E .  Hart 

probably would not be discovered in perturbation analyses conducted near the 
critical point (R,,, k,). 

I n  terms of the experiments it appears that the sidewa.ys diffusive instability 
mechanism is responsible for the initiation of layering, but by the time the cells 
have made transitions to  vertical wavelengths of the order of the width of the 
box, there is a direct thermal driving of each cell with solute stabilized interfaces 
limiting the extent of the convection. Once the system has reached this level, it 
probably has much in common with the problem of an initial ealt gradient heated 
from below, studied by Turner (1968). It will be interesting to  study the detailed 
processes which lead to the breakdown of interfaces in our experiment. 

The author would like to thank a referee for suggesting the use of equation (5.1) 
in the discussion of the instability mechanism. The laboratory and theoretical 
work described here was supported in part by N.S.F. grant GA-34937. 
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F I G U I ~ E  9. Breakdown of inteifaces. (a) Typical cell at largc hl’ or t .  Note thc botmciCtl>T- 
laycr structure. (a)-(e) Collapse of the iritcrface. Note the steepening t o  a \ crtical positlorl, 
breakdown ( r l )  arid cstablishrncnt of a ncw ccll. Tlic tiino i t i t p n  ti1 I.x,t\\cwri ( b )  and ( e )  
about 5 miii. The evposurc timr \\as 1 5 .  
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